DC FieldValueLanguage
dc.contributor.authorPapakyriakopoulos, Dimitrios-
dc.contributor.authorDoukidis, Georgios-
dc.contributor.authorPramatari, Katerina-
dc.date.accessioned2024-04-19T08:51:31Z-
dc.date.available2024-04-19T08:51:31Z-
dc.date.issued2009-02-01-
dc.identifierscopus-58749098381-
dc.identifier.issn0167-9236-
dc.identifier.other58749098381-
dc.identifier.urihttps://uniwacris.uniwa.gr/handle/3000/2145-
dc.description.abstractThe problem of products missing from the shelf is a major one in the grocery retail sector, as it leads to lost sales and decreased consumer loyalty. Yet, the possibilities for detecting and measuring an "out-of-shelf" situation are limited. In this paper we suggest the employment of machine-learning techniques in order to develop a rule-based Decision Support System for automatically detecting products that are not on the shelf based on sales and other data. Results up-to-now suggest that rules related with the detection of "out-of-shelf" products are characterized by acceptable levels of predictive accuracy and problem coverage.en_US
dc.language.isoenen_US
dc.relation.ispartofDecision Support Systemen_US
dc.subjectClassification problemen_US
dc.subjectHeuristic rulesen_US
dc.subjectOut-of-shelfen_US
dc.subjectOut-of-stocken_US
dc.subjectRule-based decision support systemen_US
dc.subjectShelf availabilityen_US
dc.titleA decision support system for detecting products missing from the shelf based on heuristic rulesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dss.2008.11.004en_US
dc.identifier.scopus2-s2.0-58749098381-
dcterms.accessRights0en_US
dc.relation.deptDepartment of Business Administrationen_US
dc.relation.facultySchool of Administrative, Economics and Social Sciencesen_US
dc.relation.volume46en_US
dc.relation.issue3en_US
dc.identifier.spage685en_US
dc.identifier.epage694en_US
dc.collaborationUniversity of West Attica (UNIWA)en_US
dc.subject.fieldSocial Sciencesen_US
dc.journalsSubscriptionen_US
dc.publicationPeer Revieweden_US
dc.countryGreeceen_US
local.metadatastatusverifieden_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.deptDepartment of Business Administration-
crisitem.author.facultySchool of Administrative, Economics and Social Sciences-
crisitem.author.orcid0000-0001-7033-1890-
crisitem.author.parentorgSchool of Administrative, Economics and Social Sciences-
Appears in Collections:Articles / Άρθρα
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

37
checked on Jan 8, 2025

Page view(s)

26
checked on Jan 10, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.