DC FieldValueLanguage
dc.contributor.authorLoukeris, Nikolaos-
dc.contributor.authorEleftheriadis, Iordanis-
dc.contributor.authorLivanis, Efstratios-
dc.date.accessioned2024-04-22T10:14:03Z-
dc.date.available2024-04-22T10:14:03Z-
dc.date.issued2016-12-01-
dc.identifierscopus-84954320297-
dc.identifier.issn1572-9974-
dc.identifier.issn0927-7099-
dc.identifier.other84954320297-
dc.identifier.urihttps://uniwacris.uniwa.gr/handle/3000/2191-
dc.description.abstractThe efficient representation of the accurate corporate value on the stock price is vital to investors and fund managers that desire to optimise the net worth of the overall stock portfolio. Although the efficient market hypothesis sets limits, the practice of markets is an ideal place of manipulation, and corruption on prices. The accounting statements, evaluated by support vector machines and the SVM hybrids under genetic algorithms provide superiority in portfolio selection, on condition. A specific genetic hybrid SVM outperformed all examined SVM models being a powerful tool in financial analysis. We also offer the integrated model of portfolio selection, PHOS.en_US
dc.language.isoenen_US
dc.relation.ispartofComputational Economicsen_US
dc.subjectBankruptcyen_US
dc.subjectGenetic algorithmsen_US
dc.subjectPortfolio selectionen_US
dc.subjectSupport vector machinesen_US
dc.titleThe Portfolio Heuristic Optimisation System (PHOS)en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10614-015-9552-1en_US
dc.identifier.scopus2-s2.0-84954320297-
dcterms.accessRights0en_US
dc.relation.deptDepartment of Business Administrationen_US
dc.relation.facultySchool of Administrative, Economics and Social Sciencesen_US
dc.relation.volume48en_US
dc.relation.issue4en_US
dc.identifier.spage627en_US
dc.identifier.epage648en_US
dc.collaborationUniversity of West Attica (UNIWA)en_US
dc.journalsSubscriptionen_US
dc.publicationPeer Revieweden_US
dc.countryGreeceen_US
local.metadatastatusverifieden_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.deptDepartment of Business Administration-
crisitem.author.facultySchool of Administrative, Economics and Social Sciences-
crisitem.author.orcid0000-0002-1891-8245-
crisitem.author.parentorgSchool of Administrative, Economics and Social Sciences-
Appears in Collections:Articles / Άρθρα
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 7, 2025

Page view(s)

36
checked on Apr 8, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.