DC FieldValueLanguage
dc.contributor.authorLoukeris, Nikolaos-
dc.contributor.authorEleftheriadis, Iordanis-
dc.date.accessioned2024-04-23T10:55:22Z-
dc.date.available2024-04-23T10:55:22Z-
dc.date.issued2015-
dc.identifiergoogle_scholar-XlKYe28AAAAJ:u-x6o8ySG0sC-
dc.identifier.issn2160-5920-
dc.identifier.otherXlKYe28AAAAJ:u-x6o8ySG0sC-
dc.identifier.urihttps://uniwacris.uniwa.gr/handle/3000/2225-
dc.description.abstractCorporate net value is efficiently described on its stock price, offering investors a chance to include a potentially surplus value to the net worth of the overall investment portfolio. Financial analysis of corporations extracted from the accounting statements is constantly demanded to support decisions making of portfolio managers. Econometrics and Artificial Intelligence methods aim to extract hidden information from complex accounting and financial data. Support Vector Machines hybrids optimized in their components by Genetic Algorithms provide effective results in corporate financial analysis.en_US
dc.language.isoenen_US
dc.publisherScientific Research Publishingen_US
dc.relation.ispartofIntelligent Information Managementen_US
dc.sourceIntelligent Information Management 7 (3), 123-129, 2015-
dc.subjectSupport vector machinesen_US
dc.subjectGenetic algorithmsen_US
dc.subjectCorporate financeen_US
dc.subjectFinancial marketsen_US
dc.titleSupport vector machines networks to hybrid neuro-genetic svms in portfolio selectionen_US
dc.typeArticleen_US
dc.identifier.doi10.4236/iim.2015.73011en_US
dc.relation.deptDepartment of Business Administrationen_US
dc.relation.facultySchool of Administrative, Economics and Social Sciencesen_US
dc.relation.volume7en_US
dc.relation.issue3en_US
dc.identifier.spage123en_US
dc.identifier.epage129en_US
dc.collaborationUniversity of West Attica (UNIWA)en_US
dc.journalsOpen Accessen_US
dc.publicationPeer Revieweden_US
dc.countryGreeceen_US
local.metadatastatusverifieden_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Business Administration-
crisitem.author.facultySchool of Administrative, Economics and Social Sciences-
crisitem.author.orcid0000-0002-1891-8245-
crisitem.author.parentorgSchool of Administrative, Economics and Social Sciences-
Appears in Collections:Articles / Άρθρα
CORE Recommender
Show simple item record

Page view(s)

22
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.