DC FieldValueLanguage
dc.contributor.authorPapakyriakopoulos, Dimitrios-
dc.contributor.authorStavrou, Vasilis-
dc.date.accessioned2024-04-19T13:31:39Z-
dc.date.available2024-04-19T13:31:39Z-
dc.date.issued2020-11-20-
dc.identifierscopus-85102362512-
dc.identifier.isbn978-1-4503-8897-9-
dc.identifier.other85102362512-
dc.identifier.urihttps://uniwacris.uniwa.gr/handle/3000/2183-
dc.description.abstractSmart retail is an important concept in smart cities, due to its potential to deliver competitive advantage to companies. As the retail sector is moving beyond locating products, in-store tracking technologies are used to deliver better services to consumers and acquire insights regarding their behavioral patterns. Retail stores are challenging environments with multiple sources of noise (e.g., shoppers' moving) that impede indoor localization and there are settings with new requirements that should be further examined. This paper has developed and deployed a low-energy Bluetooth Low Energy (BLE) beacon-based indoor positioning system that utilizes machine learning to improve its accuracy, enabling retailers to offer more effective customer location-based services and improve decision making in retailing.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the 24th Pan-Hellenic Conference on Informatics (PCI 2020)en_US
dc.titleSmart Retail: Efficient in-store localization using ensemble classifiersen_US
dc.typeConference Paperen_US
dc.relation.conference24th Pan-Hellenic Conference on Informatics (PCI 2020), 20-22 November 2020, Athens, Greeceen_US
dc.identifier.doi10.1145/3437120.3437329en_US
dc.identifier.scopus2-s2.0-85102362512-
dcterms.accessRights0en_US
dc.relation.deptDepartment of Business Administrationen_US
dc.relation.facultySchool of Administrative, Economics and Social Sciencesen_US
dc.identifier.spage301en_US
dc.identifier.epage304en_US
dc.collaborationUniversity of West Attica (UNIWA)en_US
dc.journalsSubscriptionen_US
dc.publicationPeer Revieweden_US
dc.countryGreeceen_US
local.metadatastatusverifieden_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Business Administration-
crisitem.author.facultySchool of Administrative, Economics and Social Sciences-
crisitem.author.orcid0000-0001-7033-1890-
crisitem.author.parentorgSchool of Administrative, Economics and Social Sciences-
Appears in Collections:Book Chapter / Κεφάλαιο Βιβλίου
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 3, 2024

Page view(s)

27
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.