DC FieldValueLanguage
dc.contributor.authorLoukeris, Nikolaos-
dc.date.accessioned2024-04-22T12:04:21Z-
dc.date.available2024-04-22T12:04:21Z-
dc.date.issued2009-12-01-
dc.identifierscopus-75149174427-
dc.identifier.isbn978-960-474-099-4-
dc.identifier.other75149174427-
dc.identifier.urihttps://uniwacris.uniwa.gr/handle/3000/2203-
dc.description.abstractPrediction of customers satisfaction effects strategic planning, defining the market share of the enterprise. In shipping, measurements of satisfaction are very difficult to elaborate, thus satisfaction's prediction provides valuable information. Previous research in the field used techniques of multicriteria analysis, data mining and analytical-synthetical preference models. This research aims to define the most effective method to predict satisfaction, between techniques of data mining, rough sets, neural networks and multcriteria decision analysis.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the 13th WSEAS International Conference on Computers - Held as part of the 13th WSEAS CSCC Multiconferenceen_US
dc.subjectData miningen_US
dc.subjectMulticriteria analysisen_US
dc.subjectNeural networksen_US
dc.subjectRough setsen_US
dc.subjectShippingen_US
dc.titleCustomers satisfaction in shipping enterprises of maritime cabotage with artificial intelligence and multicriteria decision analysis methodsen_US
dc.typeConference Paperen_US
dc.identifier.scopus2-s2.0-75149174427-
dcterms.accessRights0en_US
dc.relation.deptDepartment of Business Administrationen_US
dc.relation.facultySchool of Administrative, Economics and Social Sciencesen_US
dc.identifier.spage639en_US
dc.identifier.epage645en_US
dc.linkhttps://www.wseas.org/multimedia/books/2009/rodos/COMPUTERS.pdfen_US
dc.collaborationUniversity of West Attica (UNIWA)en_US
dc.subject.fieldEngineering and Technologyen_US
dc.journalsSubscriptionen_US
dc.publicationPeer Revieweden_US
dc.countryGreeceen_US
local.metadatastatusverifieden_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDepartment of Business Administration-
crisitem.author.facultySchool of Administrative, Economics and Social Sciences-
crisitem.author.orcid0000-0002-1891-8245-
crisitem.author.parentorgSchool of Administrative, Economics and Social Sciences-
Appears in Collections:Book Chapter / Κεφάλαιο Βιβλίου
CORE Recommender
Show simple item record

Page view(s)

19
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.