Authors: | Anagnostopoulos, Theodoros |
Issue Date: | 1-Mar-2021 |
Journal: | Smart Cities |
Volume: | 4 |
Issue: | 1 |
Keywords: | Artificial intelligence, Prediction, Recommendation, Smart cities, User commuting, Vehicle ride sharing |
Abstract: | Smart Cities (or Cities 2.0) are an evolution in citizen habitation. In such cities, trans-port commuting is changing rapidly with the proliferation of contemporary vehicular technology. New models of vehicle ride sharing systems are changing the way citizens commute in their daily movement schedule. The use of a private vehicle per single passenger transportation is no longer viable in sustainable Smart Cities (SC) because of the vehicles’ resource allocation and urban pollution. The current research on car ride sharing systems is widely expanding in a range of contemporary technologies, however, without covering a multidisciplinary approach. In this paper, the focus is on performing a multidisciplinary research on car riding systems taking into consideration personalized user mobility behavior by providing next destination prediction as well as a recommender system based on riders’ personalized information. Specifically, it proposes a predictive vehicle ride sharing system for commuting, which has impact on the SC green ecosystem. The adopted system also provides a recommendation to citizens to select the persons they would like to commute with. An Ar-tificial Intelligence (AI)-enabled weighted pattern matching model is used to assess user movement behavior in SC and provide the best predicted recommendation list of commuting users. Citizens are then able to engage a current trip to next destination with the more suitable user provided by the list. An experimented is conducted with real data from the municipality of New Philadelphia, in SC of Athens, Greece, to implement the proposed system and observe certain user movement behavior. The results are promising for the incorporation of the adopted system to other SCs. |
ISSN: | 2624-6511 |
DOI: | 10.3390/smartcities4010010 |
URI: | https://uniwacris.uniwa.gr/handle/3000/2686 |
Type: | Article |
Department: | Department of Business Administration |
School: | School of Administrative, Economics and Social Sciences |
Affiliation: | University of West Attica (UNIWA) |
Appears in Collections: | Articles / Άρθρα |
CORE Recommender
SCOPUSTM
Citations
15
checked on Oct 30, 2024
Page view(s)
22
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.