DC FieldValueLanguage
dc.contributor.authorAnagnostopoulos, Theodoros-
dc.contributor.authorAnagnostopoulos, Christos-
dc.contributor.authorHadjiefthymiades, Stathes-
dc.date.accessioned2024-07-09T13:04:51Z-
dc.date.available2024-07-09T13:04:51Z-
dc.date.issued2011-11-29-
dc.identifierscopus-82055172253-
dc.identifier.isbn978-0-7695-4436-6-
dc.identifier.isbn978-1-4577-0581-6-
dc.identifier.issn1551-6245-
dc.identifier.other82055172253-
dc.identifier.urihttps://uniwacris.uniwa.gr/handle/3000/2699-
dc.description.abstractMobile applications are required to operate in highly dynamic pervasive computing environments of dynamic nature and predict the location of mobile users in order to act proactively. We focus on the location prediction and propose a new model/framework. Our model is used for the classification of the spatial trajectories through the adoption of Machine Learning (ML) techniques. Predicting location is treated as a classification problem through supervised learning. We perform the performance assessment of our model through synthetic and real-world data. We monitor the important metrics of prediction accuracy and training sample size.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the 12th IEEE International Conference on Mobile Data Management (IEEE MDM 2011)en_US
dc.subjectlocation predictionen_US
dc.subjectLocation representationen_US
dc.subjectMachine learningen_US
dc.subjectTrajectory classificationen_US
dc.titleMobility prediction based on machine learningen_US
dc.typeConference Paperen_US
dc.relation.conference12th IEEE International Conference on Mobile Data Management (IEEE MDM 2011), 06-09 June 2011, Lulea, Swedenen_US
dc.identifier.doi10.1109/MDM.2011.60en_US
dc.identifier.scopus2-s2.0-82055172253-
dcterms.accessRights0en_US
dc.relation.deptDepartment of Business Administrationen_US
dc.relation.facultySchool of Administrative, Economics and Social Sciencesen_US
dc.relation.volume2en_US
dc.identifier.spage27en_US
dc.identifier.epage30en_US
dc.collaborationUniversity of West Attica (UNIWA)en_US
dc.subject.fieldEngineering and Technologyen_US
dc.journalsOpen Accessen_US
dc.publicationPeer Revieweden_US
dc.countryGreeceen_US
local.metadatastatusnot verifieden_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Paper-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptDepartment of Business Administration-
crisitem.author.facultySchool of Administrative, Economics and Social Sciences-
crisitem.author.orcid0000-0002-5587-2848-
crisitem.author.parentorgSchool of Administrative, Economics and Social Sciences-
Appears in Collections:Book Chapter / Κεφάλαιο Βιβλίου
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

36
checked on Nov 20, 2024

Page view(s)

20
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.