DC FieldValueLanguage
dc.contributor.authorAnagnostopoulos, Theodoros-
dc.contributor.authorAnagnostopoulos, Christos-
dc.contributor.authorKyriakakos, Miltos-
dc.contributor.authorKalousis, Alexandros-
dc.contributor.authorHadjiefthymiades, Stathes-
dc.date.accessioned2024-07-11T09:32:55Z-
dc.date.available2024-07-11T09:32:55Z-
dc.date.issued2009-01-01-
dc.identifierscopus-77953984787-
dc.identifier.isbn978-1-60558-644-1-
dc.identifier.other77953984787-
dc.identifier.urihttps://uniwacris.uniwa.gr/handle/3000/2721-
dc.description.abstractMobile context-aware applications experience a constantly changing environment with increased dynamicity. In order to work efficiently, the location of mobile users needs to be predicted and properly exploited by mobile applications. We propose a spatial context model, which deals with the location prediction of mobile users. Such model is used for the classification of the users' trajectories through Machine Learning (ML) algorithms. Predicting spatial context is treated through supervised learning. We evaluate our model in terms of prediction accuracy w.r.t. specific prediction parameters. The proposed model is also compared with other ML algorithms for location prediction. Our findings are very promising for the efficient operation of mobile context-aware applications.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the International Conference on Pervasive Services (ICPS '09)en_US
dc.subjectContext-awarenessen_US
dc.subjectLocation predictionen_US
dc.subjectMachine learningen_US
dc.subjectSpatial context representationen_US
dc.titlePredicting the location of mobile users: A machine learning approachen_US
dc.typeConference Paperen_US
dc.relation.conferenceInternational Conference on Pervasive Services (ICPS '09), 13-17 July 2009, London, United Kindomen_US
dc.identifier.doi10.1145/1568199.1568210en_US
dc.identifier.scopus2-s2.0-77953984787-
dcterms.accessRights0en_US
dc.relation.deptDepartment of Business Administrationen_US
dc.relation.facultySchool of Administrative, Economics and Social Sciencesen_US
dc.identifier.spage65en_US
dc.identifier.epage72en_US
dc.collaborationUniversity of West Attica (UNIWA)en_US
dc.journalsOpen Accessen_US
dc.publicationPeer Revieweden_US
dc.countryGreeceen_US
local.metadatastatusnot verifieden_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Paper-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptDepartment of Business Administration-
crisitem.author.facultySchool of Administrative, Economics and Social Sciences-
crisitem.author.orcid0000-0002-5587-2848-
crisitem.author.parentorgSchool of Administrative, Economics and Social Sciences-
Appears in Collections:Book Chapter / Κεφάλαιο Βιβλίου
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

57
checked on Nov 16, 2024

Page view(s)

18
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.