Authors: | Anagnostopoulos, Theodoros Ferreira, Denzil Velloso, Eduardo Flores, Huber Van Berkel, Niels Sarsenbayeva, Zhanna Klakegg, Simon Visuri, Aku Luo, Chu Möttönen, Antti Kostakos, Vassilis Goncalves, Jorge |
Issue Date: | 4-Feb-2019 |
Journal: | Personal and Ubiquitous Computing |
Volume: | 23 |
Issue: | 1 |
Keywords: | Context-awareness, Machine learning, Sensors, Smartphones |
Abstract: | We investigate the predictability of the next unlock event on smartphones, using machine learning and smartphone contextual data. In a 2-week field study with 27 participants, we demonstrate that it is possible to predict when the next unlock event will occur. Additionally, we show how our approach can improve accuracy and energy efficiency by solely relying on software-related contextual data. Based on our findings, smartphone applications and operating systems can improve their energy efficiency by utilising short-term predictions to minimise unnecessary executions, or launch computation-intensive tasks, such as OS updates, in the locked state. For instance, by inferring the next unlock event, smartphones can pre-emptively collect sensor data or prepare timely content to improve the user experience during the subsequent phone usage session. |
ISSN: | 1617-4909 |
DOI: | 10.1007/s00779-018-01190-0 |
URI: | https://uniwacris.uniwa.gr/handle/3000/2681 |
Type: | Article |
Department: | Department of Business Administration |
School: | School of Administrative, Economics and Social Sciences |
Affiliation: | University of West Attica (UNIWA) |
Appears in Collections: | Articles / Άρθρα |
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 16, 2024
Page view(s)
18
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.