UNIWA Diavgeia: automated subject and type categorization on organizational records
Authors: Triantafyllou, Ioannis 
Vallianos, Vassilis 
Chrysanthopoulos, Christos 
Stoyannidis, Yannis 
Dendrinos, Markos 
Panagiotopoulos, Themis 
Publisher: IEEE
Issue Date: 17-Jun-2024
Conference: 27th International Conference on Soft Computing and Measurements (SCM 2024), 22-24 May 2024, Saint Petersburg, Russian Federation 
Book: Proceedings of 2024 XXVII International Conference on Soft Computing and Measurements (SCM 2024) 
Keywords: Deep learning (DL), Machine learning (ML), Subject classification, Computational archival science, University archives, Archives and records management
Abstract: 
This paper researches the intentions and the potential benefits associated with the integration of deep and machine learning technologies into archival and records management practices. With the escalating volume and intricacy of digital records, conventional methods of organizing, categorizing, and administering records confront modern-day challenges. Deep learning (DL) technologies offer prospec...
ISBN: 979-8-3503-6370-8
DOI: 10.1109/SCM62608.2024.10554260
URI: https://uniwacris.uniwa.gr/handle/3000/3053
Type: Conference Paper
Department: Department of Archival, Library and Information Studies 
School: School of Administrative, Economics and Social Sciences 
Affiliation: University of West Attica (UNIWA) 
Appears in Collections:Book Chapter / Κεφάλαιο Βιβλίου

CORE Recommender
Show full item record

Page view(s)

14
checked on Apr 7, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.